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Usow's algorithm for solving the discrete linear L 1 approximation problem is
generalized so that it can also solve an overdetermined system of linear equations
in the L1 norm. It is then shown that this algorithm is completely equivalent to a
dual simplex algorithm applied to a linear programming problem in nonnegative
bounded variables. However, one iteration in the former is equivalent to one or
more iterations in the latter.

A dual simplex algorithm is described which seems to be the most efficient
and capable method for solving these two problems. Its efficiency is due to the
absence of artificial variables and to its simplicity. Its capability is due to the
fact that the Haar condition associated with Usow's method is completely
relaxed. Numerical results are given.

1. INTRODUCTION

Consider the following two problems, assuming all functions are real
valued.

(a) Let f(x) be a given function defined on a finite subset
X = {Xl' X 2 , ... , xn} of an interval Ion the real line. Let also linearly inde
pendent continuous functions eP1(X), eP2(X),o", ePm(x), where m < n, be
defined on I. We consider the "polynomial"

(1)

in short, L(A, x), where A denotes the parameter vector (a1 , ... , am) in
m-space Em. The L1 approximation problem for f(x) on X is to determine
A * which minimizes the function

n

R(A) = L I r(xi)l,
i~l

where the residuals r(xi) are defined by the equalities

(2)

r(Xi) = L(A, Xi) - f(Xi),
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i = 1,... , n. (3)
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(b) Consider the overdetermined system of linear equations
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(4)

where (co) is an n X m constant matrix of rank m < n, and (fi) and (ai)
are nand m vectors in En and Em' respectively. The L1 solution to (4) is
an A* which minimizes the function

where

n

R(A) = L I ri I,
i=1

i = 1,..., n.

(5)

(6)

The symbols used for problem (b) are chosen in a way to match those of
problem (a). In (4), f = {Ii} and A = {ail correspond to {f(Xi)} and {ail of
problem (a), respectively. Also matrix (Ci;) corresponds to (r/>;(xi»' Conse
quently, {ri } of (6) corresponds to {r(xi)} of (3).

It is clear that problem (a) is equivalent to problem (b). This is shown
by writing down the n equations

(7)

and examining (7) and (2) in view of (4) and (5).
For the important case when the approximating set of functions {cP;(x)}

is a Tchebycheff set, Usow [10] treated problem (a) by solving the geometrical
problem equivalent to minimizing (2).

Wagner [12] reduced problem (b) to a linear programming problem in
both the primal and the dual forms.

In Section 2, Usow's algorithm is generalized to handle problem (b) as
well. In Section 3, the equivalent linear programming problems are presented.
It is then shown in Sections 4 and 5 that Usow's algorithm is completely
equivalent to a dual simplex algorithm applied to a linear programming
problem in nonnegative bounded variables. Except that one iteration in
the former algorithm is equivalent to one or more iterations in the latter.
Also in Section 5, a suitable dual simplex algorithm for solving the above
two probiems is described and a known theorem for the discrete linear L 1

approximation is restated. In Section 6 numerical results are given. Finally
it is concluded in Section 7, that compared to other existing methods, the
presented algorithm seems to be the most efficient and capable one.
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We mention here that the dual properties of the discrete linear L 1 and Loo

approximations are emphasized once more. While Usow's algorithm is the
analog of Cheney and Goldstein's [4], for the L oo approximation, the present
work is the analog of Osborne and Watson's [6]. See also Valentine and
Van Dine [11] and Stiefel [9].

2. Usow's ALGORITHM

Usow's approach is based on the following theorem, which is a charac
terization of the solution set [7, p. 114].

THEOREM 1. Let the set of functions {<Pix)} be a Tchebycheff set, i.e.,
the matrix (<pixi)) satisfies the Haar condition. Then the best L1 approximation,
L(A *, x) to f(x) on X is a closed convex set which is the convex hull ofbest L 1

approximationsfor which L(A*, x) interpolatesf(x) in at least m of the given n
points X.

The equivalent geometrical problem is the following: Let the set K be

K = {(A, d) I (A, d) E Em+! , R(A) ~ d}.

Then K is a convex polytope, the vertices of which occur only when the
function L(A, x) - f(x) is zero at m (or more) points of X. A vertex
(Ai, di = R(Ai)) on K is said to have abscissa Ai and ordinate di .

The algorithm is to descend on K from vertex to vertex along connecting
edges of the polytope in such a way that certain intermediate vertices are
by-passed. This descent continues until the lowest vertex (A *, d*) is reached.
It is sufficient to describe one cycle in the algorithm.

Assume that we are at the vertex (A k , dk ) on K. Let the polynomial
L(Ak , x) interpolate the m points of X denoted by Uk = {u/, ... , Ukm } and
call this the reference point set. In Lagrangian form,

m

L(Fk , x) = L f(uki ) 7Tb),
i~l

(8)

where Fk denotes the parameter vector (f(Uk1), ... ,j(Ukm)). In terms of
{<pix)}, j = 1,... , m,

m

7T;(X) = I b/cp;{x),
j=l

i = 1,... , m. (9)

The m coefficients bj
i are calculated as follows.
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Let the functions (Mulei), i, j = 1,... , m, form the matrix (4)j(Ulei)). Let
also for any point x E X, lI(x) and cI>(x) be the two m vectors whose elements
are {7Tl(X), ... , 7Tm(X)} and {4>l(X),,,,, 4>m(x)}, respectively. Hence it is easy to
verify that

(10)

For i = 1,... , m, the m coefficients b/, j = 1,... , m, are the elements of the
ith row of the matrix [(4>;(Ulei ))T]-l in (10). It is also easy to verify that (10)
satisfies 7Ti(Ule j) = Oij .

Let ei be the ith column in an m unit matrix. Then if for some 0,
R(F" - oei) < R(F,,), there is a Tj such that Tjo > 0 and R(F" - Tjei) < R(F,,).
Also

(11)

and ((Fle - Tjei), R(Fle - Tjei)) is a vertex [10, pp. 238-239].
In other words a point ulei E Ule may be replaced by a point uiH E X - Ule

such that the polynomial L(A lei , x) interpolating Ulei = {Ule!''''' uiH ,... , Ulem }

has its norm R(A lei) < R(Ale). Also as indicated by (11), R(A lei) is the mini
mum of all norms obtained if Ulei were replaced by the different points of
the set {X - Ule}'

We mention that in going from (Ale, R(A le)) to (A lei , R(Alei)), one or
more vertices on K might have been by-passed. The nearest vertex to
(Fle , R(Fle)) and below it on the edge parallel to the ith parameter space
coordinate axis, say the vertex ((Fle - [rei), R(Fle - [rei)), is obtained from

(12)

This point X r is characterized by

Xl E X - Ule - X r •

(13)

Again, if there is no 0 such that R(Fle - oei) < R(Fle), then the norm
R(Fle) could not be reduced by moving on K along the edge parallel to the
ith parameter space coordinate axis. In other words ulei should not be
replaced by another point from the set {X - Ule}'

This iteration is repeated m times, once for each point in Ule in succession.
The whole cycle is then repeated a finite number of times until the solution
(A*, d*) is reached.

However, in order to handle problem (b) also, the above algorithm should
be stated in a way which does not involve the point set X, but Eqs. (4) or (7)
instead. This is indeed possible.
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By examining the set of Eqs. (7), we see that each equation corresponds
to a particular point in the set X. The coefficients in L(A, x) interpolating
any m points of X, might be calculated by solving the m equations in (7)
which correspond to such points. We consider Eqs. (7) if we deal with
problem (a) and Eqs. (4) if we deal with problem (b). Let us demonstrate
on the former. Let the m equations in (7) which correspond to the m points
Uk be denoted by the reference equation set.

The ith iteration in one cycle then is to attempt to replace the ith equation
in the reference equation set by an equation not in the set, such that a mini
mum norm is obtained. This is done for each equation in the reference
set in succession. The whole cycle may be repeated for a finite number of
times until the solution (A *, d*) is reached.

It is to be mentioned that the polytope K might have a flat bottom and,
consequently, has many (corners) vertices at the bottom. In this case, the
point (A *, d*) will be one of such vertices and the solution is not unique.
Any point on the flat bottom including such vertices is a best L l approxima
tion. This might happen also in the presence of the Haar condition. The
Haar condition guarantees that any m equations in (7) have a unique solution.

3. THE LINEAR PROGRAMMING PROBLEM

It is seen in Section 1 that problem (a) is equivalent to problem (b). Thus,
we may demonstrate on the latter one. It is shown by Wagner [12] that this
problem may be reduced to a linear programming problem. The primal
form is

n n

min Z = L Eli + L E2i'
i~l i~l

subject to the constraints

0i unrestricted, i = 1,... , m,

(14a)

(14b)

i = 1,... , n. (14c)

Here C, A and f are, respectively, matrix (Cij) and column vectors (ai) and
(1;) of (4). The column vectors El = (Eli) and E2 = (E2i)' In is an n unit
matrix. A program for solving (14) using the simplex algorithm is given
in [2].
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Yet, by going over to the dual, we have the problem

n

max z = L: fiWi ,
i~l

subject to the constraints

43

(15a)

-1 ~ Wi ~ 1, i = 1,... , n,

(I5b)

(15c)

where the vector W = (Wi)' An algorithm using interval programming
techniques for solving (15) is given in [8].

However, by defining bi = Wi + 1 and denoting b = (bi), we get the
formulation

subject to the constraints

n

max z = L: fi(b i - 1),
i~l

(16a)

(16b)

o~ bi ~ 2, i = I,..., n, (16c)

This is a programming problem in nonnegative bounded variables. It may
be solved by the simplex algorithm, as a problem with (m + n) constraints
instead of the m constraints (I6b). However, it is shown by Hadley [~,

pp. 387-394], that if a simple set of rules is observed, the same problem
may be solved without adding the extra n constraints. Let us call this the
special simplex method. The solution is based on the following theorem.

THEOREM 2. A necessary and sufficient condition for a nonzero program
for system (16) to be optimal is that (n - m) elements ofb, each has the value
zero (lower bound) or 2 (upper bound), and that the other m elements are basic
variables.

In this algorithm, we construct a simplex tableau for problem (16) as if
the elements of b were unbounded from above. Let ki(CT), i = 1,..., n, be
the ith column of matrix CT. Let m of such columns form the basis matrix B
and let bB be the basic solution. Let us define a basis indicator set for b
as the index set feb) C {I, 2,..., n} with the property that the vectors
{ki(CT) liE feb)} are a basis for Em. Let us also have the index given by



44 NABIH N. ABDELMALEK

bB = {bB}' i = 1,... , m. Let the index sets L(b) and U(b) be indicators for
the nonbasic variables bi which are respectively at their lower and upper
bounds. That is

L(b) = {i E {I, 2, ... , n} I bi = 0, i rf= I(b)}

and
U(b) = {i E {I, 2, ... , n} I bi = 2, i rf= I(b)}.

Then as usual, for any ki(CT), i rf= I(b),

Yi = B-1k;(CT),

and

where the elements of fB are /; , i E I(b). Hence

Zi = fBTB-1ki(CT).

(17)

(18)

(19)

Again, since some of the nonbasic variables will be at their upper bound
(=2), from (16b),

By denoting the first term on the right by bB and by (17),
o

bB = bBo - 2 L Yi'
iEU(b)

Also the function Z in (16a) is given by

Z = L /;(b i - I) - L /; + L /;.
iEIlb) iEL(b) iE U(b)

(20)

(21)

(22)

The algorithm is summarized by the following: A nonbasic column may
replace one of the columns in the basis, may go from its zero bound to its
upper bound or may go from its upper bound to zero. The optimal solution
is characterized by this theorem.

THEOREM 3. A basic feasible solution is maximal, if the parameters
{Zi - /;}, i rf= I(b) satisfy the relations

and

Zi - /; ~ 0,

Zi - /; ~ 0,

i E L(b),

i E U(b).

(23a)

(23b)
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In the next two sections, the relation between Usow's algorithm and the
dual simplex algorithm to the special simplex method for solving (16) is
established.

4. LINEAR PROGRAMMING AND Usow's ALGORITHM

Let us consider the following lemmas.

LEMMA 1. The optimal solution of (16) is bounded and is given by

n

o :;:::;; Z = Z :;:::;; L Iii [.
i=l

Proof The second inequality is immediate from (15a) since I Wi I :;:::;; 1
and the first inequality follows from (l4a) since €l ;?; 0 and €2 ;?; O. However
if Z = Z = 0, then €l = €2 = 0 and this implies the existence of an exact
solution to the original set of Eqs. (4). We exclude this case from our
consideration.

LEMMA 2. Consider a basic solution (feasible or not) to the special
simplex method to problem (16). The parameters Zi of (18) and the residuals ri
of (6) for the corresponding reference are related by

(24)

Proof For any ki(CT), i 1= feb), from (19),

Zi - Ii = fBTjJ-1ki(CT) - Ii = kl(CT) B-TfB - Ii ,

where B-T = (B-ly and where the transpose of fBTB-1ki(CT) equals itself.
However, as by a corresponding reference, we mean that the columns of B
are the same m rows of C in the reference equation set,

Therefore, from (6)
m

Zi - Ii = L Cijaj - Ii = ri'
j~l

(25)

(26)

Again, for a basic column ki(CT), that is which corresponds to the reference
equation set, Zi - Ii = 0 = ri'

Finally, since {Zi - Ii} is completely independent of the requirements
vector (the right-side in (l6b)), (24) is valid whether the basic solution is
feasible or not.
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LEMMA 3. In the special simplex method to problem (16), the value of Z
for a basic solution (feasible or not) is given by

Z = L: (Zi - Ii) - L: (Zi - Ii)·
ieL(b) ieU(b)

(27)

Proof In the first term on the right side of (20), the m summation signs
may be replaced by one summation sign, as

n

bB = L: B-1k i ( CT) - 2 L: B-1k i ( CT).
i~1 ieU(b)

Also the first summation in (28) may be written as

(28)

n

L: B-1ki(CT) = L: B-1k i(CT) + L: B-1kiCT) + L: B-1ki(CT). (29)
i=1 ie[(b) ieL(b) ieU(b)

Yet, Lie[(b) B-1ki(CT) = L;':1 ei = e, where e is an m vector with unit
elements. Hence, by substituting this and (29) into (28), we get

bB = e + L: B-1k i ( CT) - L: B-1k i( CT).
ieL(b) ieU(b)

Then by substituting this into (22) and also since fBT e - Lie[(b) Ii = 0, we
get

Z = L: fBTB-1kiCT) - L: fBTB-1k i(CT) - L: fi + L: Ii· (30)
ieL(b) ieU(b) ieL(b) ieU(b)

Finally, by taking the transpose of each term in the first two summations
in (30), using (25) and rearranging the terms, we get (27).

LEMMA 4. For every basic solution in the dual simplex algorithm for the
programming problem (16), Z is given by

n n

Z = L: I Zi - Ii I = L: I ri I,
i~1 i-I

(31)

where L~=1 I ri I is the norm (5) for the corresponding reference.

Proof Let us suppose that we apply the dual simplex algorithm [5,
pp. 242-247] to the enlarged system of problem (16). Then the algorithm
starts with a nonfeasible primal solution but feasible dual solution. That is
with one or more basic variable bBI < 0 such that Zi - Ii ~ 0 for all i.
The basis is then changed, one column at a time, keeping all Zi - Ii ~ 0,
until an optimal solution is reached.
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However, for the nonenlarged system, this is equivalent to starting the
solution with one or more bB violating the condition 0 ~ bB ~ 2, suchz z
that Zi - Ii ;:?: 0, i E L(b) and Zi - Ii ~ 0, i E U(b). One then moves from
one basic solution to another preserving this criterion all the time until an
optimal solution is reached. Therefore, by doing so, every term in the first
summation in (27) is positive and every term in the second summation is
negative. Also since L:iEl(b) (Zi - fi) = 0, by (24) we get (31).

LEMMA 5. In the dual simplex algorithm to problem (16), the objective
function Z equals the function Z of (14).

Proof This is a direct consequence of applying the dual simplex algo
rithm. It is also seen that L:~=l I ri I in (31) equals Z of (14).

As a result, Z is expected to decrease after each iteration in the dual
simplex algorithm to problem (16). This algorithm is described in the
following section.

5. THE DUAL SIMPLEX ALGORITHM

We start solving (16) by choosing any m linearly independent columns
of CT to form the basis B. The simplex tableau is then formed by calculating
from (17)-(19), the vectors {Yi} and the set {Zi - Ii}. The boundedness of
the solution is guaranteed by Lemma 1 and if any degeneracy occurs, it will
not cause much difficulty.

The following steps constitute none other than a dual simplex algorithm
for the method described by Hadley [5, pp. 387-394]. The choice of the
vectors which leave the basis is first done in accordance with Usow's method.
However, improvement for faster convergence is later presented. Obviously,
at the start, any nonbasic variable bi is given the value zero.

(1) For every Zi - Ii < 0, i E L(b), let bi take the value 2 and indicate
that by putting a mark above the corresponding column. Calculate bB

from (21) and go to step (2).

(2) If all bB satisfy 0 ~ bB ~ 2, an optimal solution is reached.z z
If not, go to step (3).

(3) Scan bBz for 1= 1,2,.... The first one, which is either <0 or >2,
is considered. Let such variable be bB • The corresponding column in the,
basis is to be replaced by a nonbasic column according to one of the steps
(3.1)-(3.4) below. If the new bB still violates 0 ~ bB ~ 2, this iteration is, .
repeated again until it satisfies this condition. In the next iteration the
scanning proceeds from bB and back again from bB • Let at any iteration,

1+1 1
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k;(CT) be associated with bB ., and let kr(CT) replace k;(CT) in the basis. We
consider one of two cases. •

Case 1. If bBi < 0, kr(CT) is determined from

Or = max(Ol , ( 2) < 0,

where

(32)

Yis < 0, S E L(b), (33a)

and

Yis > 0, S E U(b). (33b)

(3.1) If Or = °1 , transform the simplex tableau in the usual manner
and go to step (2).

(3.2) If Or = O2 , transform the tableau as usual, then add 2 to the
new bB . • Remove the mark from column r indicating that br is no longer
at its upper bound. Go to step (2).

Case 2. If bBi > 2, kr(CT) is determined from

(34)

where

Yis > 0, S E L(b), (35a)

and

Yis < 0, S E U(b). (35b)

(3.3) If T r = T1' transform the tableau as usual. Mark column
klCT) to indicate that b; is at its upper bound. Subtract 2y; from bB and
go to step (2).

(3.4) If T r = T2' transform the tableau as usual, remove the mark
from column k r(CT) and place a mark on column k;(CT). Add 2 to the
new bB . and subtract 2y; from bB • Go to step (2) ..

The value of z in any stage of the calculation may be calculated from (31)
or (22).

We here mention that in performing step (3) above, the decrease Liz in z,
for cases 1 and 2, respectively, are

and
Liz = (bB , - 2) T r •

(36a)

(36b)
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LEMMA 6. In the present algorithm, iffor a bB. , 0 ~ bB. ~ 2, the replace
ment of the corresponding column in the basis wdl not resuit in a decrease in
the objective function z. This corresponds to the caSe in Usow's method when
the ith equation in the corresponding reference equation set is not to be replaced
by any equation not in the set.

Proof For 0 ~ bB. ~ 2, this corresponds to bB. ~ 0, in the enlarged
basis system to proble~ (16). The first part of the l~mma follows from an
elementary property of the dual simplex algorithm when applied to the
enlarged system. The second part of the lemma follows from Lemma 4,
bearing in mind that for the corresponding reference, the columns of the
basis are the same rows of C in the reference equation set.

LEMMA 7. The last vector which enters the basis in step (3), in the ithplace,
i.e., associated with bB. which violated 0 ~ bB. ~ 2, corresponds in Usow's
method to the same ro~ in (4) which replaces th~ ith equation in the reference
equation set, for the corresponding reference.

Proof First, we mention that the vectors which leave the basis, in the
present algorithm, leave in succession, in accordance with Usow's method.
We then discuss the vectos which enter the basis.

By examining (10), one sees that the matrix (CMUki))T is itself the basis
matrix B for the corresponding reference. Accordingly the vector II(xs),

xsEX - Uk' is the vector y s of (17). Hence, in view of this and (26), tr of
(12) is itself Or or T r as given by (33) or (35), respectively. Again, charac
teristic (13) in Usow's method is equivalent to keeping all (Zi - /;J ~ 0 in
the consecutive tableaux in the enlarged system to problem (16). This is the
feasibility condition for the dual simplex algorithm.

Hence, if bB in step (3) above satisfied the condition 0 ~ bB ~ 2 after
i i

one iteration, the new basis corresponds to the nearest vertex to (Fk , R(Ek ))

which is below it on the edge parallel to the ith parameter space coordinate
axis.

However, if two or more iterations were needed for bB . to satisfy the
condition 0 ~ bB . ~ 2, the final basis corresponds to the vertex on K which
by-passed one or'more vertices from (Fk , R(Fk )). Then, since each iteration
results in a decrease in z, the lemma is established by Lemma 6.

The next lemma and theorem follow from Lemmas 4-7.

LEMMA 8. The value Z given by an optimal basic feasible solution is equal
to the optimal norm (5) and corresponds to the same reference.

THEOREM 4. Usow's algorithm is completely equivalent to a dual simplex
algorithm applied to a linear programming problem in nonnegative bounded
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variables. However, one iteration in the former is equivalent to one or more
iterations in the latter.

Now, in view of (36), the choice of the columns which leave the basis, i.e.,
in succession, may not be the most economical one. If a maximum decrease
in z is desired after every iteration, the vector to leave the basis may be
chosen from

ma.x{bB ,6r , ' (bB ; - 2) T r;}, bB , < 0, bB; > 2. (37)
'.J

Nevertheless, for problems with large m and n, different rules might be
more convenient [5, p. 246]. Yet it is also reported by Hadley [5, p. 111],
that for such problems, small differences in the number of iterations were
observed when such different rules were used.

The following theorems follow as a result of the fact that the present
algorithm is a linear programming one. They are restatements of Theorem 1
in Section 2.

THEOREM 5. Let matrix C of (4) (or its equivalent (eplXi» of (7» be of
rank m. Then there exists an L 1 solution to (4). Further, there is a reference
of m equations of (4), for which the residuals are zeros.

THEOREM 6. If the rank of C is less than m, there exists an L1 solution
to (4), such that there is a reference offewer than m equations for which the
residuals are zeros.

Theorem 5 indicates that the Haar condition may be replaced by the
requirement that C or (epj(Xi» is of rank m. While Theorem 6 indicates that
even the latter condition may also be relaxed.

6. NUMERICAL RESULTS

In each of the following three examples, matrix C is of rank 2 and the
first two columns of CT are chosen to form the initial basis B. The matrix
in the first example violates the Haar condition, while in the other two the
matrices satisfy this condition.

The first example was solved by a limiting approach in [1]. Given the
system of equations

a1 + a2 = 3,
a1 - a2 = 1,

a1 + 2a2 = 7,
2al + 4a2 = 11.1,

2a1 + a2 = 6.9,
3a1 + a2 = 7.2,
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it is required to determine 01* and O2* which minimize the L1 norm of the
residuals.

The following are the initial data for the programming problem and the
simplex tableaus for the algorithm described in the present work. The pivot
in each tableau is bracketed and also by k i we mean kiCCT).

Initial Data

I 3 7 ILl 6.9 7.2

B-1 bs k1 k2 k3 k. k5 kG

(0.5 0.5) 10 1 1 1 2 2 3
0.5 -0.5 8 1 -1 2 4 1 1

Tableau I

x )< x x
I 3 7 ILl 6.9 7.2

Is B bs k1 k2 k3 k, k5 kG
3 k1 9 - 2(1.5 + 3 + 1.5 + 2) = - 7 1 0 1.5 3 1.5 (2)
1 k2 1 - 2(-0.5 - 1 + 0.5 + 1) = 1 0 1 -0.5 -1 0.5 1

z = 8.2 0 0 -3 -3.1 -1.9 -0.2

Tableau 2

x x x
I 3 7 ILl 6.9 7.2

Is B bn k1 k2 k3 k. k5 kG
7.2 kG -3.5 + 2 = -1.5 0.5 0 0.75 1.5 0.75 1

1 k2 4.5 -0.5 1 -1.25 (-2.5) -0.25 0
z = 7.5 0.1 0 -2.85 -2.8 -1.75 0

Tableau 3

x x x
I 3 1 7 ILl 6.9 7.2

Is B bs k1 k2 k3 k. k5 kG
7.2 kG 1.2 - 2(0.6) = 0 0.2 0.6 0 0 0.6 1

11.1 k. -1.8 + 2 - 2(-0.4) = 1 0.2 -0.4 0.5 1 0.1 0
z = 4.7 0.66 -Ll2 -1.45 0 -1.47 0
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Tableau 1 is formed by multiplying the initial data by B-1, However,
since Zi - ,f; < 0, i = 3, 4, 5, and 6, the corresponding bi are given the value 2
and this is indicated by marks on such columns. The vector bB is modified

o
by subtracting 2(Y3 + Y4 + Ys + Yo)'

In Tableau I, we can only replace k 1(CT) and this is done by observing
step (3.2) of Section 5. The decrease in Z is 0.7. Yet, in Tableau 2 we had
the choice of replacing either ko(CT) or k 2( CT) in the basis. The decrease
LIz in each case is 2.8. We chose to replace k 2(CT), and this is done by
observing step (3.4). Finally, in Tableau 3 the solution is found optimal,
feasible, and degenerate with the sixth and fourth columns of CT forming
the final basis. Thus, by solving the sixth and fourth equation of this example,
we get the vertex

and d* = 4.7.

However, had we chosen to replace ko(CT) in Tableau 2, the solution
in Tableau 3 would have also been optimal and degenerate with the fourth
and second columns of CT forming the final basis. The corresponding vertex
is

and d* = 4.7.

The solution in (I] is (ai, a2)* = (2.0883, 1.7309). This point in fact lies
on the horizontal line on the bottom of K joining the previous two vertices.
Or

(2.0883,1.7309) = '\(1.77, 1.89) + (1 - '\)(2.5167, 1.5167),

with ,\ ~ .426104.
The second example was solved by the simplex method in [2, p. 298].

The same result was obtained by both Usow's and the present methods.
In the latter method, the fourth and first columns of CT formed the final
basis. The solution is obtained after two iterations by Usow's method and
after two iterations, i.e., from Tableau 3, by using (37), by the present
method.

The third example was solved by an interval programming technique
in [8, p. 328]. The solution by the present algorithm is found optimal feasible
and degenerate from the first tableau.

7. COMMENTS AND CONCLUSION

Compared to existing known methods, the algorithm described in Section 5
seems to be the most efficient and capable one. Besides its simplicity, its
efficiency is due to the advantage of using the dual simplex techniques.
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No artificial variables are needed and as a result the computational effort
is largely reduced. Obviously, in the case of rank deficiency of matrix C,
a maximum of m artificial variables are needed to start the iteration. Also
in this case the problem may be solved as a two phase problem [5, Chapter 5].

The capability of the present method is demonstrated by the fact that the
Haar condition for matrix C may be completely relaxed, as is shown by
Theorems 5 and 6. This advantage, however, is shared by other methods.
Yet, these methods are less efficient than the present one.

In the method described by Hadley [5, pp. 393-394], the problem has
always to be solved as a two phase one and in each iteration, one out of
six possibilities arise. In [2], (2n + 1) artificial variables are needed and
the method in [8] is not as simple as the present one. Finally, the method
in [1], though based on a simple principle [3, p. 233], converges very slowly.
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